Multiple Group Linear Discriminant Analysis: Robustness and Error Rate
نویسندگان
چکیده
Abstract: Discriminant analysis for multiple groups is often done using Fisher’s rule, and can be used to classify observations into different populations. In this paper, we measure the performance of classical and robust Fisher discriminant analysis using the Error Rate as a performance criterion. We were able to derive an expression for the optimal error rate in the situation of three groups. This optimal error rate serves then as a benchmark in the simulation experiments.
منابع مشابه
A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملFeature combination using linear discriminant analysis and its pitfalls
In this paper, Linear Discriminant Analysis (LDA) is investigated with respect to the combination of different acoustic features for automatic speech recognition. It is shown that the combination of acoustic features using LDA does not consistently lead to improvements in word error rate. A detailed analysis of the recognition results on the Verbmobil (VM II) and on the English portion of the E...
متن کاملImproved robustness of automatic speech recognition using a new class definition in linear discriminant analysis
This work discusses the improvements which can be expected when applying linear feature-space transformations based on Linear Discriminant Analysis (LDA) within automatic speechrecognition (ASR). It is shown that different factors influence the effectiveness of LDA-transformations. Most importantly, increasing the number of LDA-classes by using time-aligned states of Hidden-Markov-Models instea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006